
OpenCore

Reference Manual (0.7.3
:::
.4)

[2021.10.03]

Copyright ©2018-2021 vit9696

figure. Available entries include:

• BOOTx64.efi or BOOTIa32.efi
Initial bootstrap loaders, which load OpenCore.efi. BOOTx64.efi is loaded by the firmware by default consistent
with the UEFI specification. However, it may also be renamed and put in a custom location to allow OpenCore
coexist alongside operating systems, such as Windows, that use BOOTx64.efi files as their loaders. Refer to the
LauncherOption property for details.

• boot
Duet bootstrap loader, which initialises the UEFI environment on legacy BIOS firmware and loads OpenCore.efi
similarly to other bootstrap loaders. A modern Duet bootstrap loader will default to OpenCore.efi on the same
partition when present.

• ACPI
Directory used for storing supplemental ACPI information for the ACPI section.

• Drivers
Directory used for storing supplemental UEFI drivers for UEFI section.

• Kexts
Directory used for storing supplemental kernel information for the Kernel section.

• Resources
Directory used for storing media resources such as audio files for screen reader support. Refer to the UEFI Audio
Properties section for details. This directory also contains image files for graphical user interface. Refer to the
OpenCanopy section for details.

• Tools
Directory used for storing supplemental tools.

• OpenCore.efi
Main booter application responsible for operating system loading. The directory OpenCore.efi resides in is called
the root directory, which is set to EFI\OC by default. When launching OpenCore.efi directly or through a
custom launcher however, other directories containing OpenCore.efi files are also supported.

• config.plist
OC Config.

• vault.plist
Hashes for all files potentially loadable by OC Config.

• vault.sig
Signature for vault.plist.

• SysReport
Directory containing system reports generated by SysReport option.

• nvram.plist
OpenCore variable import file.

• opencore-YYYY-MM-DD-HHMMSS.txt
OpenCore log file.

• panic-YYYY-MM-DD-HHMMSS.txt
Kernel panic log file.

Note: It is not guaranteed that paths longer than OC_STORAGE_SAFE_PATH_MAX (128 characters including the
0-terminator) will be accessible within OpenCore.

3.2 Installation and Upgrade
To install OpenCore, replicate the Configuration Structure described in the previous section in the EFI volume of a
GPT partition. While corresponding sections of this document provide some information regarding external resources
such as ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of
this document. Information about kernel extensions may be found in a separate Kext List document available in the
OpenCore repository. Vaulting information is provided in the Security Properties section of this document.

The OC config file, as with any property list file, can be edited with any text editor, such as nano or vim. However,
specialised software may provide a better experience. On macOS, the preferred GUI application is Xcode. For a
lightweight

:::
The

::::::::::
ProperTree

:::::
editor

::
is
::
a
:::::::::::
lightweight, cross-platform and open-source alternative, the ProperTree editor

can be utilised.

It is strongly advised not to use any software that is
::::::::::::
recommended

::
to

:::::
avoid

::::::::::::
configuration

::::::::
creation

:::::
tools

::::
that

:::
are

:
aware

of the internal configration structure as it constantly gets out of date and will cause incorrect configuration to be

6

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/corpnewt/ProperTree

5 Booter

5.1 Introduction
This section allows the application of different types of UEFI modifications to operating system bootloaders, primarily
the Apple bootloader (boot.efi). The modifications currently provide various patches and environment alterations for
different firmware types. Some of these features were originally implemented as part of AptioMemoryFix.efi, which is
no longer maintained. Refer to the Tips and Tricks section for instructions on migration.

If this is used for the first time on customised firmware, the following requirements should be met before starting:

• Most up-to-date UEFI firmware (check the motherboard vendor website).
• Fast Boot and Hardware Fast Boot disabled in firmware settings if present.
• Above 4G Decoding or similar enabled in firmware settings if present. Note that on some motherboards, notably

the ASUS WS-X299-PRO, this option results in adverse effects and must be disabled. While no other motherboards
with the same issue are known, this option should be checked first whenever erratic boot failures are encountered.

• DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table deleted.
• No ‘slide‘ boot argument present in NVRAM or anywhere else. It is not necessary unless the system cannot be

booted at all or No slide values are usable! Use custom slide! message can be seen in the log.
• CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Refer to the ControlMsrE2 notes

for details.
• CSM (Compatibility Support Module) disabled in firmware settings if present. On NVIDIA 6xx/AMD 2xx or older,

GOP ROM may have to be flashed first. Use GopUpdate (see the second post) or AMD UEFI GOP MAKER in
case of any potential confusion.

• EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.
• VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.
• While it may not be required, sometimes Thunderbolt support, Intel SGX, and Intel Platform Trust may

have to be disabled in firmware settings present.

When debugging sleep issues, Power Nap and automatic power off (which appear to sometimes cause wake to black
screen or boot loop issues on older platforms) may be temporarily disabled. The specific issues may vary, but ACPI
tables should typically be looked at first.

Here is an example of a defect found on some Z68 motherboards. To turn Power Nap and the others off, run the
following commands in Terminal:
sudo pmset autopoweroff 0
sudo pmset powernap 0
sudo pmset standby 0

Note: These settings may be reset by hardware changes and in certain other circumstances. To view their current state,
use the pmset -g command in Terminal.

5.2 Properties
1. MmioWhitelist

Type: plist array
:::::::
Failsafe

:
:
:::::::
Empty

Description: To be filled with plist dict values, describing addresses critical for particular firmware functioning
when DevirtualiseMmio quirk is in use. Refer to the MmioWhitelist Properties section below for details.

2. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in booter.

To be filled with plist dictionary values, describing each patch. Refer to the Patch Properties section below
for details.

3. Quirks
Type: plist dict
Description: Apply individual booter quirks described in the Quirks Properties section below.

15

https://github.com/acidanthera/AptioFixPkg
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

Note: The need for this quirk is determined by early boot failures.

18. SignalAppleOS
Type: plist boolean
Failsafe: false
Description: Report macOS being loaded through OS Info for any OS.

This quirk is useful on Mac firmware, which loads different operating systems with different hardware configurations.
For example, it is supposed to enable Intel GPU in Windows and Linux in some dual-GPU MacBook models.

19. SyncRuntimePermissions
Type: plist boolean
Failsafe: false
Description: Update memory permissions for the runtime environment.

Some types of firmware fail to properly handle runtime permissions:

• They incorrectly mark OpenRuntime as not executable in the memory map.
• They incorrectly mark OpenRuntime as not executable in the memory attributes table.
• They lose entries from the memory attributes table after OpenRuntime is loaded.
• They mark items in the memory attributes table as read-write-execute.

This quirk attempts to update the memory map and memory attributes table to correct this.

Note: The need for this quirk is indicated by early boot failures .
::::
(e.g.

:::::
halts

:::
at

:::::
black

:::::::
screen),

:::::::::::
particularly

:::
in

::::
early

:::::
boot

::
of

::::
the

:::::
Linux

:::::::
kernel.

:
Only firmware released after 2017 is typically affected.

21

• Options will be listed in file system handle firmware order to maintain an established order across reboots
regardless of the operating system chosen for loading.

• Custom entries, tools, and system entries will be added after all other options.
• Auxiliary options will only be displayed upon entering “Extended Mode” in the OpenCore picker (typically by

pressing the Space key).

The boot process is as follows:

• Look up the first valid primary option in the BootNext UEFI variable.
• On failure, look up the first valid primary option in the BootOrder UEFI variable.
• Mark the option as the default option to boot.
• Boot option through the picker or without it depending on the ShowPicker option.
• Show picker on failure otherwise.

Note 1 : This process will only work reliably when the RequestBootVarRouting option is enabled or the firmware does
not control UEFI boot options (OpenDuetPkg or custom BDS). When LauncherOption is not enabled, other operating
systems may overwrite OpenCore settings and this property should therefore be enabled when planning to use other
operating systems.

Note 2 : UEFI variable boot options boot arguments will be removed, if present, as they may contain arguments that
can compromise the operating system, which is undesirable when secure boot is enabled.

Note 3 : Some operating systems, such as Windows, may create a boot option and mark it as the topmost option upon
first boot or after NVRAM resets from within OpenCore. When this happens, the default boot entry choice will remain
changed until the next manual reconfiguration.

8.2 Properties
1. Boot

Type: plist dict
Description: Apply the boot configuration described in the Boot Properties section below.

2. BlessOverride
Type: plist array
:::::::
Failsafe

:
:
:::::::
Empty

Description: Add custom scanning paths through the bless model.

To be filled with plist string entries containing absolute UEFI paths to customised bootloaders such as
\EFI\debian\grubx64.efi for the Debian bootloader. This allows non-standard boot paths to be automat-
ically discovered by the OpenCore picker. Designwise, they are equivalent to predefined blessed paths, such
as \System\Library\CoreServices\boot.efi or \EFI\Microsoft\Boot\bootmgfw.efi, but unlike predefined
bless paths, they have the highest priority.

3. Debug
Type: plist dict
Description: Apply debug configuration described in the Debug Properties section below.

4. Entries
Type: plist array
:::::::
Failsafe

:
:
:::::::
Empty

Description: Add boot entries to OpenCore picker.

To be filled with plist dict values, describing each load entry. Refer to the Entry Properties section below for
details.

5. Security
Type: plist dict
Description: Apply the security configuration described in the Security Properties section below.

6. Tools
Type: plist array
:::::::
Failsafe

:
:
:::::::
Empty

Description: Add tool entries to the OpenCore picker.

37

VirtualSMC performs authenticated restarts by splitting and saving disk encryption keys between NVRAM and
RTC, which despite being removed as soon as OpenCore starts, may be considered a security risk and thus is
optional.

6. BlacklistAppleUpdate
Type: plist boolean
Failsafe: false
Description: Ignore boot options trying to update Apple peripheral firmware (e.g. MultiUpdater.efi).

Note: Certain operating systems, such as macOS Big Sur, are incapable of disabling firmware updates by using
the run-efi-updater NVRAM variable.

7. DmgLoading
Type: plist string
Failsafe: Signed
Description: Define Disk Image (DMG) loading policy used for macOS Recovery.

Valid values:

• Disabled — loading DMG images will fail. The Disabled policy will still let the macOS Recovery load in
most cases as typically, there are boot.efi files compatible with Apple Secure Boot. Manually downloaded
DMG images stored in com.apple.recovery.boot directories will not load, however.

• Signed — only Apple-signed DMG images will load. Due to the design of Apple Secure Boot, the Signed
policy will let any Apple-signed macOS Recovery load regardless of the Apple Secure Boot state, which may
not always be desired. While using signed DMG images is more desirable, verifying the image signature may
slightly slow the boot time down (by up to 1 second).

• Any — any DMG images will mount as normal filesystems. The Any policy is strongly discouraged and will
result in boot failures when Apple Secure Boot is active.

8. EnablePassword
Type: plist boolean
Failsafe: false
Description: Enable password protection to facilitate sensitive operations.

Password protection ensures that sensitive operations such as booting a non-default operating system (e.g. macOS
recovery or a tool), resetting NVRAM storage, trying to boot into a non-default mode (e.g. verbose mode or safe
mode) are not allowed without explicit user authentication by a custom password. Currently, password and salt
are hashed with 5000000 iterations of SHA-512.

Note: This functionality is still under development and is not ready for production environments.

9. ExposeSensitiveData
Type: plist integer
Failsafe: 0x6
Description: Sensitive data exposure bitmask (sum) to operating system.

• 0x01 — Expose the printable booter path as an UEFI variable.
• 0x02 — Expose the OpenCore version as an UEFI variable.
• 0x04 — Expose the OpenCore version in the OpenCore picker menu title.
• 0x08 — Expose OEM information as a set of UEFI variables.

The exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain the booter
path, use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use a booter path to mount a booter volume, use the following command in macOS:

u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([^,]*\),.*/\1/'); \
if ["$u" != ""]; then sudo diskutil mount $u ; fi

To obtain the current OpenCore version, use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:opencore-version

48

https://github.com/acidanthera/bugtracker/issues/1255

/path/to/RsaTool -sign vault.plist vault.sig vault.pub
off=$(($(strings -a -t d OpenCore.efi | grep "=BEGIN OC VAULT=" | cut -f1 -d' ')+16))
dd of=OpenCore.efi if=vault.pub bs=1 seek=$off count=528 conv=notrunc
rm vault.pub

Note 1 : While it may appear obvious, an external method is required to verify OpenCore.efi and BOOTx64.efi
for secure boot path. For this, it is recommended to enable UEFI SecureBoot using a custom certificate and to
sign OpenCore.efi and BOOTx64.efi with a custom key. More details on customising secure boot on modern
firmware can be found in the Taming UEFI SecureBoot paper (in Russian).

Note 2 : vault.plist and vault.sig are used regardless
:::::::::
Regardless

:
of this optionwhen

:
, vault.plist is present

or
:::::
always

:::::
used

:::::
when

::::::::
present,

::::
and

::::
both

:::::::::::::
vault.plist

::::
and

::::::::::
vault.sig

::
are

:::::
used

::::
and

::::::::
required

:::::
when

:
a public key

is embedded into OpenCore.efi. Setting this option will only ensure configuration sanity, and ,
::::
and

::::::
errors

::::
will

abort the boot process otherwise.
::
in

::::::
either

::::
case.

::::::::
Setting

::::
this

::::::
option

::::::
allows

::::::::::
OpenCore

::
to

:::::
warn

::::
the

::::
user

::
if
::::
the

:::::::::::
configuration

::
is
::::

not
::
as

::::::::
required

:::
to

:::::::
achieve

::
an

:::::::::
expected

::::::
higher

:::::::
security

::::::
level.

14. ScanPolicy
Type: plist integer, 32 bit
Failsafe: 0x10F0103
Description: Define operating system detection policy.

This value allows preventing scanning (and booting) untrusted sources based on a bitmask (sum) of a set of flags.
As it is not possible to reliably detect every file system or device type, this feature cannot be fully relied upon in
open environments, and additional measures are to be applied.

Third party drivers may introduce additional security (and performance) consideratons following the provided scan
policy. The active Scan policy is exposed in the scan-policy variable of 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102
GUID for UEFI Boot Services only.

• 0x00000001 (bit 0) — OC_SCAN_FILE_SYSTEM_LOCK, restricts scanning to only known file systems defined
as a part of this policy. File system drivers may not be aware of this policy. Hence, to avoid mounting of
undesired file systems, drivers for such file systems should not be loaded. This bit does not affect DMG
mounting, which may have any file system. Known file systems are prefixed with OC_SCAN_ALLOW_FS_.

• 0x00000002 (bit 1) — OC_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. It is not always possible to detect protocol tunneling, so be aware that on some systems,
it may be possible for e.g. USB HDDs to be recognised as SATA instead. Cases like this must be reported.
Known device types are prefixed with OC_SCAN_ALLOW_DEVICE_.

• 0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.
• 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HFS file system.
• 0x00000400 (bit 10) — OC_SCAN_ALLOW_FS_ESP, allows scanning of EFI System Partition file system.
• 0x00000800 (bit 11) — OC_SCAN_ALLOW_FS_NTFS, allows scanning of NTFS (Msft Basic Data) file system.
• 0x00001000 (bit 12) — OC_SCAN_ALLOW_FS_LINUX_ROOT, allows scanning of Linux Root file systems.
• 0x00002000 (bit 13) — OC_SCAN_ALLOW_FS_LINUX_DATA, allows scanning of Linux Data file systems.
• 0x00004000 (bit 14) — OC_SCAN_ALLOW_FS_XBOOTLDR, allows scanning the Extended Boot Loader Partition

as defined by the Boot Loader Specification.
• 0x00010000 (bit 16) — OC_SCAN_ALLOW_DEVICE_SATA, allow scanning SATA devices.
• 0x00020000 (bit 17) — OC_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.
• 0x00040000 (bit 18) — OC_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.
• 0x00080000 (bit 19) — OC_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.
• 0x00100000 (bit 20) — OC_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices and old SATA.
• 0x00200000 (bit 21) — OC_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.
• 0x00400000 (bit 22) — OC_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.
• 0x00800000 (bit 23) — OC_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.
• 0x01000000 (bit 24) — OC_SCAN_ALLOW_DEVICE_PCI, allow scanning devices directly connected to PCI bus

(e.g. VIRTIO).

Note: Given the above description, a value of 0xF0103 is expected to do the following:

• Permit scanning SATA, SAS, SCSI, and NVMe devices with APFS file systems.
• Prevent scanning any devices with HFS or FAT32 file systems.
• Prevent scanning APFS file systems on USB, CD, and FireWire drives.

50

https://habr.com/post/273497/
https://systemd.io/BOOT_LOADER_SPECIFICATION/

The combination reads as:

• OC_SCAN_FILE_SYSTEM_LOCK
• OC_SCAN_DEVICE_LOCK
• OC_SCAN_ALLOW_FS_APFS
• OC_SCAN_ALLOW_DEVICE_SATA
• OC_SCAN_ALLOW_DEVICE_SASEX
• OC_SCAN_ALLOW_DEVICE_SCSI
• OC_SCAN_ALLOW_DEVICE_NVME

15. SecureBootModel
Type: plist string
Failsafe: Default
Description: Apple Secure Boot hardware model.

Sets Apple Secure Boot hardware model and policy. Specifying this value defines which operating systems will be
bootable. Operating systems shipped before the specified model was released will not boot.

Valid values:

• Default — Recent available model , currently set to x86legacy
:::::::::
Matching

:::::
model

::::
for

::::::
current

:::::::::
SMBIOS.

• Disabled — No model, Secure Boot will be disabled.
• j137 — iMacPro1,1 (December 2017). Minimum macOS 10.13.2 (17C2111)
• j680 — MacBookPro15,1 (July 2018). Minimum macOS 10.13.6 (17G2112)
• j132 — MacBookPro15,2 (July 2018). Minimum macOS 10.13.6 (17G2112)
• j174 — Macmini8,1 (October 2018). Minimum macOS 10.14 (18A2063)
• j140k — MacBookAir8,1 (October 2018). Minimum macOS 10.14.1 (18B2084)
• j780 — MacBookPro15,3 (May 2019). Minimum macOS 10.14.5 (18F132)
• j213 — MacBookPro15,4 (July 2019). Minimum macOS 10.14.5 (18F2058)
• j140a — MacBookAir8,2 (July 2019). Minimum macOS 10.14.5 (18F2058)
• j152f — MacBookPro16,1 (November 2019). Minimum macOS 10.15.1 (19B2093)
• j160 — MacPro7,1 (December 2019). Minimum macOS 10.15.1 (19B88)
• j230k — MacBookAir9,1 (March 2020). Minimum macOS 10.15.3 (19D2064)
• j214k — MacBookPro16,2 (May 2020). Minimum macOS 10.15.4 (19E2269)
• j223 — MacBookPro16,3 (May 2020). Minimum macOS 10.15.4 (19E2265)
• j215 — MacBookPro16,4 (June 2020). Minimum macOS 10.15.5 (19F96)
• j185 — iMac20,1 (August 2020). Minimum macOS 10.15.6 (19G2005)
• j185f — iMac20,2 (August 2020). Minimum macOS 10.15.6 (19G2005)
• x86legacy — Macs without T2 chip and VMs. Minimum macOS 11.0.1 (20B29)

Warning: Not all Apple Secure Boot models are supported on all hardware configurations. Starting with macOS
12 x86legacy is the only Apple Secure Boot model compatible with software update on hardware without T2
chips.

Apple Secure Boot appeared in macOS 10.13 on models with T2 chips. Since
::::
Prior

:::
to

:::::::
macOS

::
12

:
PlatformInfo

and SecureBootModel are independent,
::::
were

::::::::::::
independent,

::::::::
allowing

:
Apple Secure Boot can be used with any

SMBIOS with and without T2.
:::::::
Starting

:::::
with

:::::::
macOS

::
12

:::::::::::::::::
SecureBootModel

:::::
must

::::::
match

:::
the

::::::::
SMBIOS

:::::
Mac

::::::
model.

:::::::
Default

:::::
model

:::::::
derives

::::
the

::::::
model

:::::
based

:::
on

::::::::
SMBIOS

::::::
board

:::::::::
identifier,

::::::
either

:::
set

:::::::::::::
automatically

:::
via

::::
the

::::::::
Generic

::::::
section

::
or

::::
set

::::::::
manually

:::
via

::::
the

:::::::
SMBIOS

:::::::
section.

::
If
:::::
there

::
is
:::
no

::::::
board

::::::::
identifier

::::::::
override

:::
the

::::::
model

::::
will

:::
be

:::::::
derived

:::::::::::
heuristically

::::
from

::::::
OEM

:::::::::
SMBIOS.

Setting SecureBootModel to any valid value but Disabled is equivalent to Medium Security of Apple Secure
Boot. The ApECID value must also be specified to achieve Full Security. Check ForceSecureBootScheme when
using Apple Secure Boot on a virtual machine.

Note that enabling Apple Secure Boot is demanding on invalid configurations, faulty macOS installations, and on
unsupported setups.

Things to consider:

(a) As with T2 Macs, all unsigned kernel extensions as well as several signed kernel extensions, including NVIDIA
Web Drivers, cannot be installed.

51

https://support.apple.com/en-us/HT208330

Third-party scripts may be used to create nvram.plist file. An example of such script can be found in Utilities.
The use of third-party scripts may require ExposeSensitiveData set to 0x3 to provide boot-path variable with
the OpenCore EFI partition UUID.

Warning: This feature can be dangerous, as it passes unprotected data to firmware variable services. Only use
when no hardware NVRAM implementation is provided by the firmware or when the NVRAM implementation is
incompatible.

4. LegacyOverwrite
Type: plist boolean
Failsafe: false
Description: Permits overwriting firmware variables from nvram.plist.

Note: Only variables accessible from the operating system will be overwritten.

5. LegacySchema
Type: plist dict
Description: Allows setting certain NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.

* value can be used to accept all variables for certain GUID.

WARNING: Choose variables carefully, as the nvram.plist file is not vaulted. For instance, do not include
boot-args or csr-active-config, as these can be used to bypass SIP.

6. WriteFlash
Type: plist boolean
Failsafe: false
Description: Enables writing to flash memory for all added variables.

Note: This value should be enabled on most types of firmware but is left configurable to account for firmware
that may have issues with NVRAM variable storage garbage collection or similar.

The nvram command can be used to read NVRAM variable values from macOS by concatenating the GUID and name
variables separated by a : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables.

9.3 Mandatory Variables
Warning: These variables may be added by the PlatformNVRAM or Generic subsections of the PlatformInfo section.
Using PlatformInfo is the recommended way of setting these variables.

The following variables are mandatory for macOS functioning:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB
BoardSerialNumber. Present on newer Macs (2013+ at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM
Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

9.4 Recommended Variables
The following variables are recommended for faster startup or other improvements:

•
:::
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:BridgeOSHardwareModel
::::::
Bridge

:::
OS

:::::::::
hardware

::::::
model

:::::::
variable

:::::
used

::
to

::::::::::
propagate

::
to

::::::
IODT

::::::::::::
bridge-model

:::
by

::::::::
EfiBoot.

::::::
Read

:::
by

::::::::::
hw.target

::::::
sysctl

:
,
::::
used

:::
by

:::::::::::::::::::::::::::
SoftwareUpdateCoreSupport.

55

https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0

Description: Update Data Hub fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

10. Memory
Type: plist dictionary
Description: Define custom memory configuration.

Note: This section is ignored and may be removed when CustomMemory is false.

11. PlatformNVRAM
Type: plist dictionary
Description: Update platform NVRAM fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

12. SMBIOS
Type: plist dictionary
Description: Update SMBIOS fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

10.2 Generic Properties
1. SpoofVendor

Type: plist boolean
Failsafe: false
Description: Sets SMBIOS vendor fields to Acidanthera.

It can be dangerous to use “Apple” in SMBIOS vendor fields for reasons outlined in the SystemManufacturer
description. However, certain firmware may not provide valid values otherwise, which could obstruct the operation
of some software.

2. AdviseFeatures
Type: plist boolean
Failsafe: false
Description: Updates FirmwareFeatures with supported bits.

Added bits to FirmwareFeatures:

• FW_FEATURE_SUPPORTS_CSM_LEGACY_MODE (0x1) - Without this bit, it is not possible to reboot to Windows
installed on a drive with an EFI partition that is not the first partition on the disk.

• FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) - Without this bit, it is not possible to reboot
to Windows installed on a drive with an EFI partition that is the first partition on the disk.

• FW_FEATURE_SUPPORTS_APFS (0x00080000) - Without this bit, it is not possible to install macOS on an
APFS disk.

•
::::::::::::::::::::::::::::::::::::::
FW_FEATURE_SUPPORTS_LARGE_BASESYSTEM (

::::::::::::
0x800000000

:
)
:
-
::::::::
Without

::::
this

::::
bit,

::
it
::
is
::::
not

::::::::
possible

::
to

::::::
install

::::::
macOS

::::::::
versions

::::
with

:::::
large

:::::::::::
BaseSystem

:::::::
images,

:::::
such

::
as

:::::::
macOS

::::
12.

Note: On most newer firmwares these bits are already set, the option may be necessary when "upgrading" the
firmware with new features.

3. MaxBIOSVersion
Type: plist boolean
Failsafe: false
Description: Sets BIOSVersion to 9999.999.999.999.999, recommended for legacy Macs when using Automatic
PlatformInfo, to avoid BIOS updates in unofficially supported macOS versions.

4. SystemMemoryStatus
Type: plist string
Failsafe: Auto
Description: Indicates whether system memory is upgradable in PlatformFeature. This controls the visibility
of the Memory tab in “About This Mac”.

62

work in runtime, i.e. during operating system functioning. Feature highlights:

• NVRAM namespaces, allowing to isolate operating systems from accessing select variables (e.g. RequestBootVarRouting
or ProtectSecureBoot).

• Read-only and write-only NVRAM variables, enhancing the security of OpenCore, Lilu, and Lilu plugins, such as
VirtualSMC, which implements AuthRestart support.

• NVRAM isolation, allowing to protect all variables from being written from an untrusted operating system (e.g.
DisableVariableWrite).

• UEFI Runtime Services memory protection management to workaround read-only mapping (e.g. EnableWriteUnprotector).

11.6 OpenLinuxBoot
OpenLinuxBoot is an OpenCore plugin implementing OC_BOOT_ENTRY_PROTOCOL. It detects and boots Linux distros
which are installed according to the Boot Loader Specification or to the closely related (but not identical, see next
paragraph) systemd BootLoaderSpecByDefault. In effect this means Linux distributions where the available boot
options are found in {ESP}/loader/entries/*.conf files (for instance /boot/efi/loader/entries/*.conf) or in
{boot}/loader/entries/*.conf files (for instance /boot/loader/entries/*.conf). The former layout – pure Boot
Loader Specification, using kernel files on the EFI System Partition or Extended Boot Loader Partition – is specific to
systemd-boot, the latter layout with kernel files typically on the partition which will be mounted as /boot applies to
most Fedora-related distros including Fedora itself, RHEL and variants.

BootLoaderSpecByDefault includes the possibility of expanding GRUB variables in its *.conf files – and this is used
in practice in certain distros such as CentOS. In order to correctly handle this, OpenLinuxBoot extracts all variables
from {boot}/grub2/grubenv and any unconditionally set variables from {boot}/grub2/grub.cfg. This has proved
sufficient in practice to extract the required variables seen so far in distros which use this GRUB-specific feature.

For distributions which do not use either of the above schemes, OpenLinuxBoot will autodetect and boot {boot}/vmlinuz*
kernel files directly, after linking these automatically – based on the kernel version in the filename – to their associated
{boot}/init* ramdisk files, and after searching in /etc/default/grub for kernel boot options and /etc/os-release
for the distro name. This layout applies to most Debian-related distros, including Debian itself, Ubuntu and variants.

The method of starting the kernel relies on it being compiled with EFISTUB, however this applies to almost all modern
distros, particularly those which use systemd. Most modern distros use systemd as their system manager (even though
at the same time most do not use systemd-boot as their bootloader).

The latest kernel version of a given install is always shown in the boot menu. Additional versions, recovery versions,
etc. are added as auxiliary boot entries, so depending on OpenCore’s HideAuxiliary setting may not be shown until
the space key is pressed.

Note 1 : OpenLinuxBoot requires filesystem drivers that may not be available in firmware such as EXT4 and BTRFS
drivers. These drivers can be obtained from external sources. Drivers tested in basic scenarios can be downloaded
from OcBinaryData. Be aware that these drivers are neither tested for reliability in all scenarious, nor underwent any
tamper-resistance testing, therefore have may carry potential security or data-loss risks.

Most Linux distributions keep their boot files on the
::
an

:
EXT4 file system

:::::::
partition

:
even when the distribution’s main

::::
root filesystem is something else,

:
such as BTRFS, therefore a suitable UEFI

::::
only

:::
an

:
EXT4 file system driver such

as ext4_x64 is normally required. A BTRFS driver such as btrfs_x64 will be required in a
:::
the

::::::::
currently

:
somewhat

less standard setup
:::::::
situation

:
where the boot files are on a BTRFS partition, e.g. as

:
is

:::::::::
currently

::::
done

:
by default in

openSUSE.

Pure Boot Loader Spec (e.g. as implemented by systemd-boot) keeps all kernel and ramdisk images directly on the EFI
System Partition (or an Extended Boot Loader Partition), therefore it requires no additional filesystem driver - but it
is not widely used except in Arch Linux.

Note 2 :
::::::::::::::
OpenLinuxBoot

::::
does

:::
not

::::::::
attempt

::
to

:::::
read

::::
and

::::::::
interpret

:::
the

::::::
layout

:::
of

:::::
Linux

:::::::::::
installation

::::::
media

::::::
(which

::::
can

:::
be

:::::
highly

:::::::::
variable).

:::::::::::
Installation

::::::
media

::::::
should

:::
be

:::::::
booted

:::::::
directly

::::::
either

::::
from

::::
the

:::::::::
machine’s

::::
own

::::
EFI

:::::
boot

:::::
menu

:::
or

:::::
from

:::
the

:::::::::
OpenCore

:::::
boot

::::::
menu.

:::
In

:::::
some

:::::
cases,

::::
e.g.

::::::
Apple

:::
T2

:::::::::
hardware,

:::::
then

::
–

:::::::::
depending

:::
on

:::::::::::
OpenCore’s

:::::::
security

::::::::
settings

:
–
::::::::::
OpenCore

::::
may

:::
be

::::
able

::
to

:::::
start

:::::
some

::::::
Linux

::::::::
installers

::::::
which

:::
the

::::::::::
machine’s

::::
own

::::::::::
bootloader

:::
will

::::::
refuse

:::
to

:::::
boot.

:

::::
Note

::
3:
:

systemd-boot users (probably almost exclusively Arch Linux users) should be aware that OpenLinuxBoot does
not support the systemd-boot–specific Boot Loader Interface; therefore use efibootmgr rather than bootctl for any

76

https://systemd.io/BOOT_LOADER_SPECIFICATION/
https://fedoraproject.org/wiki/Changes/BootLoaderSpecByDefault
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://systemd.io/BOOT_LOADER_INTERFACE/

low-level Linux command line interaction with the boot menu.

::::
Note

::
4:
::::

Be
::::::
aware

::
of

::::
the

:::::::::::::::::::::::
SyncRuntimePermissions

:::::
quirk,

::::::
which

:::::
may

::::
need

:::
to

:::
be

:::
set

::
to

::::::
avoid

:::::
early

:::::
boot

::::::
failure

::::
(i.e.

::::
halts

:::::
with

:::::
black

:::::::
screen)

::
of

::::
the

:::::
Linux

::::::
kernel

::::
due

::
to

::
a
::::::::
firmware

::::
bug

::
of

:::::
some

:::::::::
firmware

:::::::
released

:::::
after

:::::
2017.

:

The default parameter values should work well, but if you need to parameterise this driver the following options may
be specified in UEFI/Drivers/Arguments:

• flags - Default: all flags except LINUX_BOOT_ADD_DEBUG_INFO are set.

Available flags are:

– 0x00000001 (bit 0) — LINUX_BOOT_SCAN_ESP, Allows scanning for entries on EFI System Partition.
– 0x00000002 (bit 1) — LINUX_BOOT_SCAN_XBOOTLDR, Allows scanning for entries on Extended Boot Loader

Partition.
– 0x00000004 (bit 2) — LINUX_BOOT_SCAN_LINUX_ROOT, Allows scanning for entries on Linux Root filesystems.
– 0x00000008 (bit 3) — LINUX_BOOT_SCAN_LINUX_DATA, Allows scanning for entries on Linux Data filesystems.
– 0x00000080 (bit 7) — LINUX_BOOT_SCAN_OTHER, Allows scanning for entries on file systems not matched by

any of the above.

The following notes apply to all of the above options:

Note 1 : Apple filesystems APFS and HFS are never scanned.

Note 2 : Regardless of the above flags, a file system must first be allowed by Misc/Security/ScanPolicy
before it can be seen by OpenLinuxBoot or any other OC_BOOT_ENTRY_PROTOCOL driver.

Note 3 : It is recommended to enable scanning LINUX_ROOT and LINUX_DATA in both OpenLinuxBoot flags
and Misc/Security/ScanPolicy in order to be sure to detect all valid Linux installs.

– 0x00000100 (bit 8) — LINUX_BOOT_ALLOW_AUTODETECT, If set allows autodetecting and linking vmlinuz*
and init* ramdisk files when loader/entries files are not found.

– 0x00000200 (bit 9) — LINUX_BOOT_USE_LATEST, When a Linux entry generated by OpenLinuxBoot is
selected as the default boot entry in OpenCore, automatically switch to the latest kernel when a new version
is installed.

When this option is set, an internal menu entry id is shared between kernel versions from the same install of
Linux. Linux boot options are always sorted highest kernel version first, so this means that the latest kernel
version of the same install always shows as the default, with this option set.

Note: This option is recommended on all systems.

– 0x00000400 (bit 10) — LINUX_BOOT_ADD_RO, This option applies to autodetected Linux only (i.e. to Debian-
style distrubutions, not to BLSpec and Fedora-style distributions with /loader/entries/*.conf files).
Some distrubtions run a filesystem check on loading which requires the root filesystem to initially be mounted
read-only via the ro kernel option. Set this bit to add this option on autodetected distros; should be harmless
but very slightly slow down boot time (due to requried remount as read-write) on distros which do not
require it. To specify this option for specific distros only, use partuuidopts:{partuuid}+=ro instead of
this flag.

–
:::::::::::
0x00004000

:::
(bit

:::
14

:
)
:::
—

::::::::::::::::::::::::
LINUX_BOOT_LOG_VERBOSE,

::::
Add

::::::::::
additional

::::::
debug

:::
log

::::
info

::::::
about

::::
files

:::::::::::
encountered

:::
and

::::::::::
autodetect

:::::::
options

::::::
added

:::::
while

:::::::::
scanning

:::
for

:::::
Linux

:::::
boot

:::::::
entries.

:

– 0x00008000 (bit 15) — LINUX_BOOT_ADD_DEBUG_INFO, Adds a human readable file system type, followed
by the first eight characters of the partition’s unique partition uuid, to each generated entry name. Can help
with debugging the origin of entries generated by the driver when there are multiple Linux installs on one
system.

Flag values can be specified in hexadecimal beginning with 0x or in decimal, e.g. flags=0x80 or flags=128.

• partuuidopts:{partuuid}[+]="{options}" - Default: not set.

Allows specifying kernel options for a given partition only. If specified with += then these are used in addition to
autodetected options, if specified with = they are used instead. Used for autodetected Linux only. Values specified
here are never used for entries created from /loader/entries/*.conf files.

Note: The partuuid value to be specified here is typically the same as the PARTUUID seen in root=PARTUUID=...
in the Linux kernel boot options (view using cat /proc/cmdline) for autodetected Debian-style distros, but is
NOT the same for Fedora-style distros booted from /loader/entries/*.conf files.

77

Failsafe: false
Description: Perform UEFI controller connection after driver loading.

This option is useful for loading drivers following UEFI driver model as they may not start by themselves.
Examples of such drivers are filesystem or audio drivers. While effective, this option may not be necessary for
drivers performing automatic connection, and may slightly slowdown the boot.

Note: Some types of firmware, particularly those made by Apple, only connect the boot drive to speed up the
boot process. Enable this option to be able to see all the boot options when running multiple drives.

4. Drivers
Type: plist dict

:::::
array

Failsafe: None
::::::
Empty

Description: Load selected drivers from OC/Drivers directoryusing the settings specified in the .
:

::
To

:::
be

:::::
filled

::::
with

::::::
plist

::::::
dict

::::::
values,

::::::::::
describing

::::
each

::::::
driver.

::::::
Refer

::
to

::::
the

:
Drivers Properties section below.

5. Input
Type: plist dict
Failsafe: None
Description: Apply individual settings designed for input (keyboard and mouse) in the Input Properties section
below.

6. Output
Type: plist dict
Failsafe: None
Description: Apply individual settings designed for output (text and graphics) in the Output Properties section
below.

7. ProtocolOverrides
Type: plist dict
Failsafe: None
Description: Force builtin versions of certain protocols described in the ProtocolOverrides Properties section
below.

Note: all protocol instances are installed prior to driver loading.

8. Quirks
Type: plist dict
Failsafe: None
Description: Apply individual firmware quirks described in the Quirks Properties section below.

9. ReservedMemory
Type: plist array
:::::::
Failsafe

:
:
:::::::
Empty

Description: To be filled with plist dict values, describing memory areas exclusive to specific firmware and
hardware functioning, which should not be used by the operating system. Examples of such memory regions could
be the second 256 MB corrupted by the Intel HD 3000 or an area with faulty RAM. Refer to the ReservedMemory
Properties section below for details.

11.8 APFS Properties
1. EnableJumpstart

Type: plist boolean
Failsafe: false
Description: Load embedded APFS drivers from APFS containers.

An APFS EFI driver is bundled in all bootable APFS containers. This option performs the loading of signed
APFS drivers (consistent with the ScanPolicy). Refer to the “EFI Jumpstart” section of the Apple File System
Reference for details.

2. GlobalConnect
Type: plist boolean

79

https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf
https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf

Enabling this setting plays the boot chime using the builtin audio support. The volume level is determined by the
MinimumVolume and VolumeAmplifier settings as well as the SystemAudioVolume NVRAM variable. Possible
values include:

• Auto — Enables chime when StartupMute NVRAM variable is not present or set to 00.
• Enabled — Enables chime unconditionally.
• Disabled — Disables chime unconditionally.

Note: Enabled can be used in separate from StartupMute NVRAM variable to avoid conflicts when the firmware
is able to play the boot chime.

7. ResetTrafficClass
Type: plist boolean
Failsafe: false
Description: Set HDA Traffic Class Select Register to TC0.

AppleHDA kext will function correctly only if TCSEL register is configured to use TC0 traffic class. Refer to Intel
I/O Controller Hub 9 (ICH9) Family Datasheet (or any other ICH datasheet) for more details about this register.

Note: This option is independent from AudioSupport. If AppleALC is used it is preferred to use AppleALC
alctsel property instead.

8. SetupDelay
Type: plist integer
Failsafe: 0
Description: Audio codec reconfiguration delay in microseconds.

Some codecs require a vendor-specific delay after the reconfiguration (e.g. volume setting). This option makes it
configurable. A typical delay can be up to 0.5 seconds.

9. VolumeAmplifier
Type: plist integer
Failsafe: 0
Description: Multiplication coefficient for system volume to raw volume linear translation from 0 to 1000.

Volume level range read from SystemAudioVolume varies depending on the codec. To transform read value in
[0, 127] range into raw volume range [0, 100] the read value is scaled to VolumeAmplifier percents:

RawV olume = MIN(SystemAudioV olume ∗ V olumeAmplifier

100 , 100)

Note: the transformation used in macOS is not linear, but it is very close and this nuance is thus ignored.

11.11 Drivers Properties
1.

:::::::
Comment
:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
:::::::
Empty

::::::::::::
Description:

::::::::::
Arbitrary

::::::
ASCII

::::::
string

:::::
used

::
to

::::::::
provide

::::::
human

::::::::
readable

:::::::::
reference

:::
for

::::
the

::::::
entry.

:::::::::
Whether

::::
this

:::::
value

::
is

::::
used

::
is

::::::::::::::
implementation

::::::::
defined.

:

2. Path
Type: plist string
Failsafe: Empty
Description: Path of file to be loaded as a UEFI driver from OC/Drivers directory.

3. Enabled
Type: plist boolean
Failsafe: false
Description: If false this driver entry will be ignored.

4. Arguments
Type: plist string
Failsafe: Empty
Description: Some OC plugins accept optional additional arguments which may be specified as a string here.

84

	Installation and Upgrade
	Booter
	Introduction
	Properties

	Properties
	Mandatory Variables
	Recommended Variables
	Generic Properties
	OpenLinuxBoot
	APFS Properties
	Drivers Properties

